ORIGINAL PAPER

In silico QSAR studies of anilinoquinolines as EGFR inhibitors

Farhan Ahmad Pasha • Muhammad Muddassar • Anil Kumar Srivastava • Seung Joo Cho

Received: 15 February 2009 / Accepted: 9 April 2009 / Published online: 10 July 2009 © Springer-Verlag 2009

Abstract Members of the epidermal growth factor receptor (EGFR) family of proteins are frequently overactive in solid tumors. A relatively new therapeutic approach to inhibit the kinase activity is the use of ATPcompetitive small molecules. In silico techniques were employed to identify the key interactions between inhibitors and their protein receptors. A series of EGFR inhibitory anilinoquinolines was studied within the framework of hologram quantitative structure activity

Dedication This manuscript is dedicated to Dr. P. P. Singh, M. L. K. College Balrampur on the occasion of his 75th birthday.

F. Ahmad Pasha Computational Science Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea

S. Joo Cho (⊠) Research Center for Resistant Cells, Chosun University, Gwangju 501-759, Republic of Korea e-mail: chosj@chosun.ac.kr

S. Joo ChoCollege of Medicine, Chosun University,375 Seosuk-dong,Dong-gu Gwangju 501-759, Rep. of Korea

M. MuddassarSchool of Science, University of Science and Technology,52 Eoeun-dong, Yuseong-gu,Daejeon 305-333, South Korea

A. Kumar Srivastava Department of Chemistry, M. L. K. P. G. College, Balrampur, India

Present Address:

F. Ahmad Pasha Institute de Biologie Structurale, 41, Rue Jules Horowitz, Grenoble-Cedex 38027, France relationship (HQSAR), density functional theory (DFT)based OSAR, and three-dimensional (3D) OSAR (CoMFA/CoMSIA). The HQSAR analysis implied that substitutions at certain sites on the inhibitors play an important role in EGFR inhibition. DFT-based OSAR results suggested that steric and electronic interactions contributed significantly to the activity. Ligand-based 3D-QSAR and receptor-guided 3D-QSAR analyses such as CoMFA and CoMSIA techniques were carried out, and the results corroborated the previous two approaches. The 3D QSAR models indicated that steric and hydrophobic interactions are dominant, and that substitution patterns are an important factor in determining activity. Molecular docking was helpful in identifying a bioactive conformer as well as a plausible binding mode. The docked geometry-based CoMFA model with steric and electrostatic fields effect gave $q^2 = 0.66$, $r^2 = -0.94$ with $r^2_{\text{predictive}}=0.72$. Similarly, CoMSIA with hydrophobic field gave $q^2=0.59$, $r^2=0.85$ with $r^2_{\text{predictive}}=0.63$. Bulky groups around site 3 of ring "C", and hydrophilic and bulky groups at position 6 of ring "A" are desirable, with a hydrophobic and electron-donating group at site 7 of ring "A" being helpful. Accordingly, potential EGFR inhibitors may be designed by modification of known inhibitors.

Keywords 3D-QSAR \cdot CoMFA \cdot Epidermal growth factor receptor \cdot Density functional theory \cdot Anilinoquinazoline \cdot Kinase inhibitors

Introduction

Epidermal growth factor receptor (EGFR) is a growth factor receptor kinase that has been implicated in different kinds of cancer [1]. EGFR is overexpressed in numerous tumors derived from brain, lung, bladder, head, and neck [2, 3], implicating EGFR inhibitors as potential anticancer drugs. Recently, a large number of compounds have been

synthesized and evaluated as EGFR inhibitors, with special attention being paid to compounds having a phenyl amino pyrimidine moiety in their structures [4–8]. Computational techniques and quantitative structure activity relationship (QSAR) analysis have been applied successfully to explore the possibilities of potential inhibitors further. The combined application of seemingly disparate methods such as hologram quantitative structure activity relationship (HQSAR), and density functional theory (DFT)-based QSAR, as well as three-dimensional (3D)-QSAR techniques such as comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) have proven quite successful [9–15].

Anilinoquinolines are well-known EGFR inhibitors, as demonstrated in 2D and 3D-QSAR studies [16–18]. The Xray structure of EGFR in complex with an inhibitor has also been published [19], which will facilitate further structurebased design. In this study, we report on HQSAR, DFTbased QSAR, ligand-based 3D-QSAR, and receptor-guided 3D-QSAR analyses of 58 anilinoquinoline derivatives. HQSAR analysis was performed by varying parameters concerning atom (A), bond (B), connectivity (C), hydrogen atom (H) and H-bonding donor/acceptor (D/A). DFT-based descriptors were used to study electronic interactions. The 3D field analyses utilized CoMFA [20] and CoMSIA [21]. The EGFR structure was taken from the protein data bank (http://www.rcsb.org/pdb/; PDB 1M17) and used as a receptor site for anilinoquinolines.

Theory

DFT-based descriptors have proven immensely useful in predicting the reactivity of atoms and molecules as well as site selectivity [22, 23]. In DFT-based frontier molecular orbital examinations—highest occupied molecular orbital (ε_{HOMO}) and lowest unoccupied molecular orbital (ε_{LUMO})—several global chemical descriptors of molecules such as hardness (η) [23] and global softness (S) [23], chemical potential (μ) [22], electronegativity (χ) [24], and electrophilicity index (ω) [25] have been used widely in QSAR. Reasonably, the $\varepsilon_{HOMO} \varepsilon_{LUMO}$ energies play important roles in different reactions and can be used as descriptors.

The softness of an atom in a molecule was first described by Klopman [26] and modified by Singh et al. [27]. The Klopman Equations 1 and 2 are as follows.

$$E_m^{\ddagger} = IP_m - a^2 (IP_m - EA_m) - \left[\frac{\chi_s(C_s^m)^2}{R_r}\right] (1 - 1/\varepsilon) \left[q_r + 2b^2 \chi_r(C_r^m)^2\right]$$
(1)

$$E_n^{\ddagger} = IP_n - b^2 (IP_n - EA_n) - \left[\frac{\chi_s(C_s^n)^2}{R_s}\right] (1 - 1/\varepsilon) \left[q_s - 2b^2 \chi_s(C_s^n)^2\right]$$
(2)

Where

E_n^+	Softness of Lewis acid
E_m^{\ddagger}	Softness of a Lewis base
IP	Ionization potential of an atom in a molecule
EA	Electron affinity of an atom in a molecule
ε	Dielectric constant of the medium in which
	reaction is carried out
R and EA	Radius and charge of atom s and r
С	Electron density
χ_s	$q - (q - 1)\sqrt{k}$ and $k=0.75$
a&b	Variational parameters defined as $a^2 + b^2 = 1$

The ionization potential (IP), electron affinity (EA), charge (q), and electron density (*C*) of an atom in a molecule are essential requirements for solution of the Klopman Equations. The IP calculation of an atom in a molecule has been described [28], as has EA [29]. The usefulness of the difference between softness of highest acidic and highest basic site (Eq. 3) has been recently reviewed [35].

$$\Delta E_{nm}^{\dagger} = \left| E_n^{\dagger} - E_m^{\dagger} \right| \tag{3}$$

The charge and electron density of an atom in a molecule can be obtained by DFT calculations. Water medium is taken, hence the value of the dielectric constant was used in the calculation [30].

The molar refractivity is a constitutive-additive property that can be calculated using the Lorenz-Lorentz formula (Eq. 4)

$$MR = \frac{(n^2 - 1 * MW)}{(n^2 + 2 * d)}$$
(4)

Where MW is the molecular weight, n is the refractive index, and d the density. The value of MR depends only on the wave longitude of the light used to measure the refractive index.

Materials and methods

The basic structure of the anilinoquinazolines is shown in Fig. 1.

A set of 58 anilinoquinolines with EGFR inhibitory activity were identified from the literature [31] (Table 1). The compounds were divided randomly into a training set (n= 46) and test set (n=12). The IC₅₀ values (i.e., the concentration (μ M) of inhibitor that produces 50% inhibition of EGFR) were converted into pIC₅₀=-logIC₅₀ (Table 1).

Fig. 1 Basic structure of anilinoquinolines

Table 1 pIC_{50} values of 4-(X-phenylamino)-Y-quinazoline derivatives

Compound no.	Х	Υ	pIC50
1	Н	Н	6.46
2	3-F	Н	7.25
3	3-Cl	Н	7.64
4	3-Br	Н	7.57
5	3-I	Н	7.1
6	3-CF3	На	6.24
7	Н	6-OMe	7.26
8	3-Br	6-OMe	7.52
9	Н	6-NH2	6.11
10	3-CF3	6-NH2	6.24
11	3-Br	6-NH2	9.11
12	Н	6-NO2	5.3
13	3-Br	6-NO2	6.05
14	Н	7-OMe	6.92
15	3-Br	7-OMe	8
16	Н	7-NH2	7
17	3-F	7-NH2	8.7
18	3-C1	7-NH2	9.6
19	3-Br	7-NH2	10
20	3-I	7-NH2	9.46
21	3-CF3	7-NH2	8.48
22	Н	7-NO2	4.92
23	3-F	7-NO2	5.22
24	3-C1	7-NO2	6.09
25	3-Br	7-NO2	6
26	3-I	7-NO2	6.27
27	Н	6,7-di-OMe	7.54
28	3-F	6,7-di-OMe	8.42
29	3-C1	6,7-di-OMe	9.51
30	3-Br	6,7-di-OMe	10.6
31	3-I	6,7-di-OMe	9.05
32	3-CF3	6,7-di-OMe	9.62
33	3-Br	6-NHMe	8.4
34	3-Br	6-NMe2	7.08
35	3-Br	7-OH	8.33

Table 1 (continued)							
Compound no.	Х	Y	pIC50				
36	3-Br	7-NHMe	8.16				
37	3-Br	7-NHC2H5	7.92				
38	3-Br	7-NMe2	7.96				
39	3-Br	6,7-di-NH2	9.92				
40	3-Br	6-NH2,7-NHMe	9.16				
41	3-Br	6-NH2,7-NMe2	6.8				
42	3-Br	6-NH2,7-OMe	8.42				
43	3-Br	6-NH2, 7-Cl	8.19				
44	3-Br	6-NO2, 7-NH2	7.28				
45	3-Br	6-NO2, 7-NHMe	7.17				
46	3-Br	6-NO2, 7-NMe2	5.7				
47	3-Br	6-NO2,7-OMe	7.82				
48	3-Br	6-NO2,7-Cl	7.6				
49	3-Br	6,7-di-OHa	9.77				
50	3-Br	6,7-di-OC2H5	11.22				
51	3-Br	6,7-di-OC3H7	9.77				
52	3-Br	6,7-di-OC4H9	6.98				
53	3-Br	5,6-di-OMe	5.86				
54	3-Br	5,6,7-tri-OMe	9.17				
55	2-Br	6,7-di-OMe	6.89				
56	4-Br	6,7-di-OMe	9.02				
57	3,4-di-Br	6,7-di-OMe	10.14				
58	3,5-di-Br	6,7-di-OMe	6.95				

Computational details

Hologram quantitative structure activity relationship

HQSAR is a promising tool with which to establish the relationship between the structure of a compound and its biological activities. Advantages of this approach include the ability to achieve molecular alignment and conformational specification, as well as selection and calculation or measurement of physicochemical descriptors. In this study, several HQSAR models were developed using Sybyl 7.3 software (Tripos, St. Louis, MO). HQSAR was performed using fragment parameters A, B, C, H, and DA. Several combinations of these parameters were considered using fragment size (3–8), with 12 default series of hologram lengths of 53, 59, 61, 71, 83, 97, 151, 199, 257, 307, 353, and 401 bins. An optimum number of components (LV) were selected in each case.

DFT analysis

All geometries were optimized at the B3LYP/6-31G level using polarizable continuum model (PCM) solvation for water in the Gaussian03 package [31] (http://www.gaussian.com/

citation_g03.htm). The total energy, electrophilicity index, and other values were calculated using standard working equations given in theory. The Klopman atomic softness in terms of E_n and E_m values were calculated at each atom of every molecule using necessary values from Gaussian results. The highest E_n value (corresponding to the highest acidic site) and highest E_m values (corresponding to the highest basic site) of each molecule were identified and their difference (ΔE_{nm}) was used as a descriptor with other important properties such as total energy and molar refractivity (MR) [32].

Three-dimensional-quantitative structure activity relationship analysis

The analysis utilized CoMFA and CoMSIA, which themselves utilized Sybyl ver. 7.3 software (Tripos) running on a Linux cluster. Initially, molecular geometries were minimized using Tripos force field (TFF) [33] in conjunction with Gasteiger–Huckel charges, distance-dependent dielectric, and conjugate gradient methods. The convergence criterion was 0.01 kcal/mol. Two different geometrical schemes (AM1 and docked-based), in conjunction with three kinds of charges, namely Gasteiger Huckel (GH), Gasteiger Marsili (GM), and molecular mechanics (MM), were used to develop the QSAR models. In CoMFA, both the steric and electrostatic fields were used as descriptors. In CoMSIA, all five fields (steric, electrostatic, hydrophobic, donor, and acceptor) were used as descriptors.

Comparative molecular field analysis

The steric and electrostatic potential fields for CoMFA was calculated at each lattice intersection of a regularly spaced grid of 2.0Å. The lattice was defined automatically and extended up to four units past van der Waals volume of all molecules in the X, Y, and Z directions. The van der Waals potential and columbic terms, which represent steric and electrostatic fields, respectively, were calculated using TFF and distance-dependent dielectric constant. An sp³ carbon atom with a van der Waals radius of 1.52Å and charge of +1.0 served as the probe atom to calculate the steric and electrostatic fields. The steric and electrostatic contributions were truncated to ± 30 kcal mol⁻¹ and electrostatic contributions were ignored at lattice intersections with maximum steric interactions. The CoMFA steric and electrostatic fields were generated and scaled by the CoMFA standard option given in the Sybyl software.

Comparative molecular similarity analysis

The reported CoMSIA method is based on molecular similarity indices with the same lattice box used for CoMFA. Molecular similarity was expressed in terms of five different properties (steric, electrostatic, hydrophobic, H-bond donors, and acceptors) calculated using a C⁺ probe atom with a radius of 1.0Å placed at a regular grid spacing of 2.0 Å. CoMSIA similarity indices (A_F) for molecule *j* with atoms *i* at a grid point *q* were calculated using Eq. 5

$$A_{F,K}^{q}(j) = -\sum \omega_{prob,k} \omega_{ik} e^{-\alpha r^{2}} iq$$
(5)

where k represents the following physicochemical properties: steric electrostatic, hydrophobic, H-bond donor, and Hbond acceptor. A Gaussian-type distance dependence was used between grid point q and each atom i of the molecule. The default value (0.3) was used as the attenuation factor (α). The steric indices are related to the third power of the atomic radii, electrostatic descriptors are derived from atomic partial charges, hydrophobic fields are derived from atom-based parameters [34] and H-bond donor and acceptor indices are obtained by a rule-based method based on experimental results [35].

Statistics

Multiple linear regression analysis

Multiple linear regression analysis (MLR) analysis was performed using DataFit software [36] (http://www. curvefitting.com/index.html) to derive QSAR models. Quantum chemical descriptors were used as independent variables, and the pIC₅₀ value was used as the dependent variable. A systematic search was performed to determine the significant descriptors. To minimize the effect of colinearity and avoid redundancy, a correlation matrix was developed and the exact linear variables were not used in final model.

Partial least square analysis and validation of QSAR models

To derive 3D-QSAR models, CoMFA and CoMSIA descriptors were used as independent variables, and pIC₅₀ values were used as the dependent variable. The partial least squares (PLS) method was used to linearly correlate these CoMFA and CoMSIA descriptors to activity. The CoMFA cutoff values were set at 30 kcal mol⁻¹ for both steric and electrostatic fields, and all fields were scaled by the default options in Sybyl. Cross-validation analysis was performed using the leave one out (LOO) method, in which one compound is removed from the data set and its activity predicted using the model derived from the rest of the dataset. The cross-validated correlation coefficient (q^2) resulted in the optimum number of components, and the

lowest standard error of prediction considered for further analysis was calculated using Eq. 6:

$$q^{2} = 1 - \frac{\sum_{y} \left(\gamma_{pred} - \gamma_{observed}\right)^{2}}{\sum_{y} \left(\gamma_{observed} - \gamma_{mean}\right)^{2}}$$
(6)

$$PRESS = \sum_{y} \left(\gamma_{predicted} - \gamma_{observed} \right)^2 \tag{7}$$

Where, γ_{pred} , γ_{actual} and γ_{mean} are the predicted, actual, and mean values of the target property (pIC₅₀), respectively, and PRESS is the sum of squared deviation between predicted and observed activities of the training set molecules (calculated using Eq. 7). Non-cross-validated PLS analyses were performed with a column filter value of 2.0 to reduce analysis time with a small effect on the q^2 values. To achieve robustness and statistical confidence in the derived models, bootstrapping analysis was used for 10 runs. To assess the predictive power of the derived QSAR models, the activity of a test set of 12 molecules was predicted. The predictive abilities of the models were expressed by the predictive r^2 value, which is analogous to cross-validated r^2 (q^2) as calculated using Eq. 8:

$$r_{pred}^2 = \frac{SD - PRESS}{SD} \tag{8}$$

where SD is the sum of the squared deviations between the biological activities of the test set and mean activities of the training molecules.

Results

Hologram quantitative structure activity relationship analysis

HQSAR was performed on 58 anilinoquinolines using a training set of 46 molecules and a test set of 12 molecules (Table 1). The statistical summary of the HQSAR analysis shown in Table 2 indicates that the best model obtained by the combination of fragment A/H type with length 199 provided good statistics ($q^2=0.67$, $r^2=0.90$, Ensemble= 0.52, SE=0.51, Component=6, length=199). The activities of the test and training sets predicted by this model are reported in Table 3 with other statistical values. The model is quite reliable as it is based on the relationship of substituents and hydrogen atoms with biological activity. Since the structures of the current series are very similar, and the variation of activity is a function of substituents, the presence of any substituents or hydrogen at certain sites

Table 2 Regression summary of hologram quantitative structure activity relationship (HQSAR) models. q^2 Cross validated correlation coefficient, r^2 correlation coefficient, *SE* standard error, *n* number of PLS component, *L* length of hologram, *A* atoms, *B* bonds, *C* connections, *H* hydrogen atoms, *DA* donor and acceptor atoms

	q^2	r^2	Ε	SE	L
А	0.45	0.88	0.34	0.55	353
В	0.57	0.87	0.46	0.59	61
С	0.45	0.86	0.38	0.6	401
Н	0.68	0.84	0.62	0.65	97
DA	0.45	0.66	0.4	0.92	257

might be useful to describe the activity. The fragment contribution to the activity of molecules 23 and 30 are displayed in Figs. 2 and 3, respectively. In Fig. 2, ring "A" contains a nitro (NO₂) group, which strongly disfavors activity, as is apparent by the brown color. This moiety affected the contribution to activity of both rings "A" and "B". Compound 30 has a similar skeleton, with two methoxy groups at ring "A"; both rings "A" and "B" contributed to activity. Ring C in compound 23 has no substitution and the hydrogen atom disfavored activity, while in compound 30 ring C contributed positively to activity due to one chloro substituent. These results imply that an electron-withdrawing group such as the NO2 moiety at position 6 of ring "A" is unfavorable for activity, as shown by the red color in Fig. 2. The effect of such a group was spread up to ring "B", which contributed negatively to activity. Electron-donating groups such as the OCH3 moiety at ring "A" were favorable for activity. This was supported by the present observation of the retention of an electrondonating group at ring "A" by the highly active molecule. Similarly, an electronegative group at ring "C" contributed to enhanced activity.

DFT-based QSAR

The HQSAR study demonstrated that the biological activity of the tested anilinoquinolines is significantly related to the molecular substituents. Accordingly, we utilized DFT-based QSAR to consider electronic interactions. All molecules were fully optimized at DFT B3LYP/6-31G level, and the electronic populations were calculated using the Mulliken population analysis (MPA) scheme. The most important global electronic properties, such as the electronegativity and electrophilicity indices, were calculated and correlation with biological activity was attempted in conjunction with molar refractivity (MR) and solvent accessible surface area (SASA). This approach was unsuccessful. Atomic properties such as atomic softness E_n and E_m (given by KLOP-MAN) were also calculated at all sites of every molecule.

Table 3 Observed and predicted activities of training and test sets by two different HQSAR models. pIC_{50} Observed activity, PA_{19} predicted activityby model 19, NC net hologram contribution, PA_{AVG} average predicted activity, SE_{PRED} standard error in prediction, SEM standard error of mean

Training set 1 6.46 5.84 -1.19 5.83 0.26791 0.080778 $2a$ 7.25 6.105 -0.44 6.431 0.224356 0.06764 5 7.1 6.011 -0.923 7.040 0.195892 0.08904 6 6.24 6.091 -0.761 6.276 0.531036 0.10141 7 7.26 6.46 -0.852 6.491 0.199511 0.08744 8 7.52 7.88 -0.302 7.093 0.16239 0.04913 13 6.05 5.957 -1.047 6.061 0.31476 0.094904 14 6.92 7.251 -0.497 7.194 0.245991 0.07356 19 10 9.598 1.037 9.422 0.38097 0.115508 21 8.48 8.22 0.951 8.665 0.407233 0.122791 22 4.92 5.254 -1.197 5.012 0.124377 0.03788 21 <th>Compound no.</th> <th>pIC₅₀</th> <th>PA₁₉</th> <th>NC</th> <th>PA_{AVG}</th> <th>SE_{PRED}</th> <th>SEM</th>	Compound no.	pIC ₅₀	PA ₁₉	NC	PA _{AVG}	SE _{PRED}	SEM
1 6.46 5.84 -1.9 5.83 0.24756 0.080748 2a 7.25 6.105 -0.44 6.311 0.224356 0.067646 5 7.11 6.911 -0.923 7.049 0.19582 0.059064 6 6.24 6.091 -0.761 6.276 0.51363 0.100131 7 7.52 7.88 -0.362 7.693 0.16239 0.09714 8 7.52 7.88 -0.362 7.693 0.14894 0.03714 13 6.05 5.577 -1.047 6.061 0.31476 0.09994 14 6.92 7.251 -0.497 7.194 0.239711 0.073166 158 8.723 0.377 9.422 0.399012 0.12307 20 9.46 9.598 1.037 9.422 0.399012 0.12291 21 8.48 8.728 0.9776 9.438 0.38007916 0.14573 23 5.22 5.54 -1.197 5.012 0.12831 0.073798 24 6.09 5.933 1.195 6.041 0.244761 0.073798 25 6 6.375 -0.942 6.214 0.17547 0.049200 26 6.27 6.326 -1.097 7.66 0.12437 0.037489 27 7.54 8.183 0.094 7.866 0.144572 0.09542 28 8.42 8.183 0.094 7.706 0.238317 0.08534 <	Training set						
2a 7.25 6.105 -0.44 6.431 0.243356 0.067646 5 7.1 6.91 -0.923 7.049 0.195892 0.059064 6 6.24 6.091 -0.761 6.276 0.531035 0.16013 7 7.26 6.46 -0.852 6.491 0.10289 0.057141 8 7.25 7.93 -0.302 7.693 0.16289 0.09914 13 6.05 5.957 -1.047 6.061 0.31476 0.09914 14 6.92 7.251 -0.497 7.194 0.239751 0.073366 19 10 9.588 1.037 9.422 0.39012 0.120307 20 9.46 9.549 0.976 9.438 0.38097 0.115056 21 8.48 8.728 0.951 8.662 0.47233 0.12791 22 8.49 5.22 5.519 -1.427 5.612 0.256013 0.077191 24	1	6.46	5.84	-1.19	5.83	0.26791	0.080778
5 7,1 6,911 -0.923 7,049 0.198902 0.09004 6 6.24 6.091 -0.761 6.276 0.531036 0.160113 7 7.26 6.46 -0.852 6.491 0.190511 0.057441 8 7.52 7.58 -0.362 7.693 0.16289 0.049113 9 6.11 6.411 -1.033 6.683 0.418944 0.126316 13 6.05 5.957 -1.047 6.061 0.31476 0.0970818 14 6.92 7.251 0.497 7.194 0.237951 0.073318 15 8 8.371 0.244 8.396 0.243991 0.07350 20 9.46 9.599 0.976 9.438 0.38097 0.11508 21 8.48 8.72 0.410 0.244781 0.407253 0.122791 22 4.92 5.254 -1.197 5.012 0.183816 0.05121 23 5.22 5.19 -1.427 5.612 0.25013 0.071791 24	2a	7.25	6.105	-0.44	6.431	0.224356	0.067646
6 6.24 6.091 -0.761 6.276 0.51036 0.10113 7 7.26 6.46 -0.852 6.491 0.190511 0.057441 8 7.52 7.58 -0.362 7.693 0.16289 0.04911 9 6.11 6.411 1.033 6.683 0.418944 0.126316 13 6.05 5.957 -1.047 7.194 0.259751 0.07316 14 6.92 7.251 -0.497 7.194 0.259751 0.073566 19 10 9.598 1.037 9.422 0.399912 0.120307 20 9.46 9.549 0.976 9.438 0.383097 0.15508 21 8.48 8.728 0.917 5.012 0.128216 0.025121 22 4.92 5.519 -1.427 5.612 0.2630 0.077191 24 6.09 5.933 -1.197 5.612 0.26003 0.073788 25 6	5	7.1	6.911	-0.923	7.049	0.195892	0.059064
7 7.26 6.46 -0.852 6.491 0.190511 0.057441 8 7.52 7.58 -0.362 7.693 0.16289 0.049113 9 6.11 6.411 -1.033 6.683 0.418944 0.126316 14 6.92 7.251 -0.497 7.194 0.25751 0.078318 15 8 8.371 -0.244 8.396 0.243991 0.023307 20 9.46 9.549 0.976 9.438 0.33097 0.11508 21 8.48 8.728 0.951 8.665 0.407253 0.122791 23 5.22 5.19 -1.427 5.612 0.286013 0.077191 24 6.09 5.933 -1.195 6.041 0.244761 0.07378 25 6 6.375 0.942 6.214 0.15754 0.047500 26 2.7 6.326 -1.094 6.23 0.24333 0.07379 29 9.1	6	6.24	6.091	-0.761	6.276	0.531036	0.160113
8 7.52 7.58 -0.362 7.693 0.16289 0.049113 9 6.11 6.411 -1.033 6.683 0.418944 0.12314 13 6.05 5.957 -1.047 6.061 0.31476 0.094904 14 6.92 7.251 -0.497 7.194 0.259751 0.07318 15 8 8.371 -0.244 8.396 0.249901 0.07356 19 10 9.598 1.037 9.422 0.39001 0.15508 21 8.48 8.728 0.976 9.438 0.381097 0.115508 22 4.92 5.254 -1.197 5.012 0.182816 0.055121 23 5.22 5.19 -1.427 5.612 0.250013 0.071791 24 6.09 5.933 -1.197 5.612 0.250013 0.072377 25 6 6.27 6.326 -1.094 6.23 0.124371 0.0349489 26	7	7.26	6.46	-0.852	6.491	0.190511	0.057441
9 6.11 6.411 -1.033 6.683 0.418944 0.126316 13 6.05 5.957 -1.047 6.061 0.31476 0.094904 14 6.92 7.251 0.4977 7.194 0.259751 0.078318 15 8 8.371 -0.244 8.396 0.2439911 0.073566 19 10 9.598 1.037 9.422 0.3390012 0.120307 20 9.46 9.549 0.976 9.438 0.383097 0.115508 21 8.48 8.728 0.951 8.665 0.407253 0.12231 23 5.22 5.19 -1.197 5.012 0.15816 0.05512 24 6.09 5.933 -1.195 6.041 0.244761 0.07378 25 6 6.375 -0.942 6.214 0.15754 0.044702 26 6.277 6.326 -1.094 6.23 0.124377 0.37549 27 7.54 <td>8</td> <td>7.52</td> <td>7.58</td> <td>-0.362</td> <td>7.693</td> <td>0.16289</td> <td>0.049113</td>	8	7.52	7.58	-0.362	7.693	0.16289	0.049113
13 6.05 5.957 -1.047 6.061 0.31476 0.09404 14 6.92 7.251 0.497 7.194 0.237951 0.07356 15 8 8.371 -0.244 8.396 0.24399 0.07356 19 10 9.598 1.037 9.422 0.390012 0.12307 20 9.46 9.549 0.976 9.438 0.407253 0.122791 21 8.48 8.728 0.951 8.665 0.407253 0.122791 22 4.92 5.254 -1.197 5.012 0.182816 0.055121 23 5.22 5.519 -1.427 5.612 0.250013 0.077191 24 6.07 6.326 -1.094 6.23 0.124337 0.037489 25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 7.36 0.164572 0.049620 27 7.53 8.42 8.48 0.22 8.466 0.240048 0.072377	9	6.11	6.411	-1.033	6.683	0.418944	0.126316
14 6.92 7.251 -0.497 7.194 0.259751 0.078318 15 8 8.371 -0.244 8.396 0.243991 0.07356 19 10 9.598 1.037 9.422 0.39012 0.120307 20 9.46 9.549 0.976 9.438 0.383097 0.115508 21 8.48 8.728 0.951 8.665 0.407253 0.12791 22 4.92 5.254 -1.197 5.612 0.256013 0.077191 24 6.09 5.933 -1.195 6.041 0.244761 0.073789 25 6 6.375 -1.094 6.21 0.124337 0.047500 26 6.27 6.326 -1.094 6.23 0.124371 0.049500 28 8.42 8.448 0.24 9.068 0.24304 0.072377 29 9.51 8.862 0.538 8.95 0.28309 0.072371 29 9.51 8.862 0.538 8.95 0.28309 0.072371 29	13	6.05	5.957	-1.047	6.061	0.31476	0.094904
15 8 8.371 -0.244 8.396 0.243991 0.073566 19 10 9.598 1.037 9.422 0.390012 0.120307 20 9.46 9.549 0.976 9.438 0.383097 0.115508 21 8.48 8.728 0.951 8.665 0.407253 0.122791 22 4.92 5.254 -1.197 5.012 0.182816 0.05512 23 5.22 5.519 -1.427 5.612 0.256013 0.077191 24 6.09 5.933 -1.094 6.23 0.124337 0.03489 25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 7.866 0.164572 0.049620 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.728 9.084 0.26146 0.076534 31	14	6.92	7.251	-0.497	7.194	0.259751	0.078318
19 10 9.598 1.037 9.422 0.399012 0.120307 20 9.46 9.549 0.976 9.438 0.383097 0.115508 21 8.48 8.728 0.951 8.65 0.407233 0.122791 22 4.92 5.254 -1.197 5.012 0.182816 0.055121 23 5.22 5.519 -1.427 5.612 0.256013 0.071919 24 6.09 5.933 -1.192 6.041 0.15754 0.047500 25 6 6.375 -0.942 6.214 0.15754 0.049620 28 8.42 8.448 0.22 8.46 0.24046 0.047237 29 9.51 8.862 0.538 8.895 0.283039 0.085340 30 10.6 9.304 0.624 9.068 0.25343 0.076534 31 9.05 9.255 0.728 9.084 0.264606 0.62234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 37	15	8	8.371	-0.244	8.396	0.243991	0.073566
20 9.46 9.549 0.976 9.438 0.383097 0.115508 21 8.48 8.728 0.951 8.665 0.407253 0.122791 22 4.92 5.254 -1.197 5.012 0.182816 0.055121 23 5.22 5.519 -1.427 5.612 0.226013 0.077191 24 6.09 5.933 -1.195 6.041 0.244761 0.07378 25 6 6.375 -0.942 6.214 0.15754 0.04750 26 6.27 6.326 -1.094 6.23 0.124337 0.03789 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.842 0.388 8.95 0.235834 0.076234 31 9.05 9.255 0.728 9.084 0.206466 0.062234 334 8.4 </td <td>19</td> <td>10</td> <td>9.598</td> <td>1.037</td> <td>9.422</td> <td>0.399012</td> <td>0.120307</td>	19	10	9.598	1.037	9.422	0.399012	0.120307
21 8.48 8.728 0.951 8.665 0.407253 0.122791 22 4.92 5.24 -1.197 5.012 0.182816 0.055121 23 5.22 5.519 -1.427 5.612 0.256013 0.077191 24 6.09 5.933 -1.195 6.041 0.244761 0.073789 25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.040620 28 8.42 8.448 0.22 8.466 0.240048 0.072337 30 10.6 9.304 0.624 9.068 0.253834 0.076514 31 9.05 9.255 0.728 9.084 0.264066 0.062234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 37 7.96 7.943 -0.153 7.06 0.311056 0.093787	20	9.46	9.549	0.976	9.438	0.383097	0.115508
22 4.92 5.254 -1.197 5.012 0.182816 0.055121 23 5.22 5.519 -1.427 5.612 0.26013 0.077191 24 6.09 5.933 -1.195 6.041 0.244761 0.07378 25 6 6.375 -0.942 6.214 0.15754 0.0447500 26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.040620 28 8.42 8.488 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.23834 0.07634 31 9.05 9.255 0.728 9.064 0.268217 0.085996 35 8.33 8.316 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.173 7.976 0.285217 0.085996 37 7.92 7.483 -0.056 7.703 0.511056 0.17357 3	21	8.48	8.728	0.951	8.665	0.407253	0.122791
23 5.22 5.519 -1.427 5.612 0.256013 0.077191 24 6.09 5.933 -1.195 6.041 0.247761 0.073798 25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.238039 0.085340 30 10.6 9.304 0.624 9.068 0.255834 0.076534 31 9.05 9.255 0.728 9.084 0.26646 0.062234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.285217 0.085996 <td< td=""><td>22</td><td>4.92</td><td>5.254</td><td>-1.197</td><td>5.012</td><td>0.182816</td><td>0.055121</td></td<>	22	4.92	5.254	-1.197	5.012	0.182816	0.055121
24 6.09 5.933 -1.195 6.041 0.244761 0.073798 25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.23039 0.085340 30 10.6 9.304 0.624 9.068 0.255834 0.076334 31 9.05 9.255 0.728 9.084 0.206406 0.62234 33a 8.4 7.821 -0.173 7.976 0.285217 0.08596 37 7.92 7.443 -0.115 7.706 0.23517 0.08596 37 9.92 9.892 1.246 9.74 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.18171 0.0588769 0.18173	23	5.22	5.519	-1.427	5.612	0.256013	0.077191
25 6 6.375 -0.942 6.214 0.15754 0.047500 26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.28039 0.088340 30 10.6 9.304 0.624 9.068 0.253834 0.076534 31a 9.05 9.255 0.728 9.084 0.206406 0.06234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 35 8.33 8.316 -1.82 8.296 0.265145 0.079241 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.097871 38 9.9	24	6.09	5.933	-1.195	6.041	0.244761	0.073798
26 6.27 6.326 -1.094 6.23 0.124337 0.037489 27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.283039 0.085340 30 10.6 9.304 0.624 9.068 0.253334 0.076534 31 9.05 9.255 0.728 9.084 0.26406 0.062234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.118173 0.94666 41 6	25	6	6.375	-0.942	6.214	0.15754	0.047500
27 7.54 8.183 0.094 7.866 0.164572 0.049620 28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.283039 0.083340 30 10.6 9.304 0.624 9.068 0.253834 0.076334 31 9.05 9.255 0.728 9.084 0.206466 0.062234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 35 8.33 8.316 -0.182 8.296 0.265145 0.07944 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.03 0.57695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.07901 40 9.16 9.033 0.713 8.781 0.18173 42 8.42 </td <td>26</td> <td>6.27</td> <td>6.326</td> <td>-1.094</td> <td>6.23</td> <td>0.124337</td> <td>0.037489</td>	26	6.27	6.326	-1.094	6.23	0.124337	0.037489
28 8.42 8.448 0.22 8.466 0.240048 0.072377 29 9.51 8.862 0.538 8.895 0.283039 0.085340 30 10.6 9.304 0.624 9.068 0.253834 0.07654 31 9.05 9.255 0.728 9.084 0.266406 0.062234 3aa 8.4 7.821 -0.173 7.976 0.285217 0.085996 35 8.33 8.316 -0.182 8.296 0.265145 0.079944 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079241 40 9.16 9.033 0.713 8.781 0.18173 0.48462 41	27	7.54	8.183	0.094	7.866	0.164572	0.049620
29 9.51 8.862 0.538 8.895 0.283039 0.085340 30 10.6 9.304 0.624 9.068 0.253834 0.076534 31 9.05 9.255 0.728 9.084 0.206406 0.062234 3a 8.4 7.821 -0.173 7.976 0.285217 0.085996 35 8.33 8.316 -0.182 8.296 0.265145 0.079944 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.18173 0.94486 41 6.8 6.994 -0.811 7.08 0.328769 0.108173 42	28	8.42	8.448	0.22	8.466	0.240048	0.072377
30 10.6 9.304 0.624 9.068 0.253834 0.076534 31 9.05 9.255 0.728 9.084 0.206406 0.062234 33a 8.4 7.821 -0.173 7.976 0.285217 0.085996 35 8.33 8.316 -0.182 8.296 0.265145 0.07994 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.576695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.28241 0.068908 43 8.19 8.351 0.147 8.618 0.223424 0.067365	29	9.51	8.862	0.538	8.895	0.283039	0.085340
319.059.2550.7289.0840.2064060.062234 $33a$ 8.47.821 -0.173 7.9760.2852170.085996 35 8.338.316 -0.182 8.2960.2651450.07944 36 8.167.821 -0.173 7.9760.2852170.085996 37 7.927.443 -0.115 7.7060.3110560.093787 38 7.967.983 -0.056 7.7030.5756950.173579 39 9.929.8921.2469.7740.2626780.079201 40 9.169.0330.7138.7810.1819710.054866 41 6.86.994 -0.811 7.080.3587690.108173 42 8.428.123 -0.031 8.4620.2882410.086908 43 8.198.3510.1478.6180.2234240.067365 44 7.288.020.2437.9950.311870.094032 45 7.177.263 -0.353 7.2630.2582790.077874 46 5.75.582 -2.044 5.6880.2954990.089096 47 7.827.291 -0.246 7.260.28770.086745 48 7.67.101 -0.343 7.2630.1388830.041875 49 9.7710.2340.8229.7880.6169060.186004 50 11.2211.333.06311.3450.3019320.091036 51 <	30	10.6	9.304	0.624	9.068	0.253834	0.076534
33a8.47.821-0.1737.9760.2852170.085996358.338.316-0.1828.2960.2651450.079944368.167.821-0.1737.9760.2852170.085996377.927.443-0.1157.7060.3110560.093787387.967.983-0.0567.7030.5756950.173579399.929.8921.2469.7740.2626780.079201409.169.0330.7138.7810.1819710.054866416.86.994-0.8117.080.3587690.108173428.428.123-0.0318.4620.2882410.086908438.198.3510.1478.6180.2234240.067365447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2882790.077874465.75.582-2.0445.6880.2954990.089066477.827.291-0.2467.2630.1388330.041875499.7710.2340.8229.7980.6169060.186045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.185030.093666535.867.079-0.9547.27	31	9.05	9.255	0.728	9.084	0.206406	0.062234
35 8.33 8.316 -0.182 8.296 0.265145 0.079944 36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.28241 0.06908 43 8.19 8.351 0.147 8.618 0.223424 0.067365 44 7.28 8.02 0.243 7.995 0.31187 0.094032 45 7.17 7.263 -0.353 7.263 0.258279 0.077874 46 5.7 5.582 -2.044 5.688 0.295499 0.080966 <t< td=""><td>33a</td><td>8.4</td><td>7.821</td><td>-0.173</td><td>7.976</td><td>0.285217</td><td>0.085996</td></t<>	33a	8.4	7.821	-0.173	7.976	0.285217	0.085996
36 8.16 7.821 -0.173 7.976 0.285217 0.085996 37 7.92 7.443 -0.115 7.706 0.311056 0.093787 38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.288241 0.068908 43 8.19 8.351 0.147 8.618 0.223424 0.067365 44 7.28 8.02 0.243 7.995 0.31187 0.094032 45 7.17 7.263 -0.353 7.263 0.258279 0.077874 46 5.7 5.582 -2.044 5.688 0.295499 0.089096 47 7.82 7.291 -0.246 7.26 0.2877 0.086745 48 7.6 7.101 -0.343 7.263 0.138883 0.041875 49 9.77 10.234 0.822 9.798 0.616906 0.186004 50 11.22 11.33 3.063 11.345 0.301932 0.091036 51 9.77 10.056 1.741 9.672 0.318653 0.056022 53 5.86 7.079 -0.954	35	8.33	8.316	-0.182	8.296	0.265145	0.079944
377.927.443-0.1157.7060.3110560.093787387.967.983-0.0567.7030.5756950.173579399.929.8921.2469.7740.2626780.079201409.169.0330.7138.7810.1819710.054866416.86.994-0.8117.080.3587690.108173428.428.123-0.0318.4620.2882410.086908438.198.3510.1478.6180.2234240.067365447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.08906477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.316530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.085 <td< td=""><td>36</td><td>8.16</td><td>7.821</td><td>-0.173</td><td>7.976</td><td>0.285217</td><td>0.085996</td></td<>	36	8.16	7.821	-0.173	7.976	0.285217	0.085996
38 7.96 7.983 -0.056 7.703 0.575695 0.173579 39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.288241 0.067365 43 8.19 8.351 0.147 8.618 0.223424 0.067365 44 7.28 8.02 0.243 7.995 0.31187 0.094032 45 7.17 7.263 -0.353 7.263 0.258279 0.077874 46 5.7 5.582 -2.044 5.688 0.295499 0.08906 47 7.82 7.291 -0.246 7.26 0.2877 0.086745 48 7.6 7.101 -0.343 7.263 0.13883 0.041875 49 9.77 10.234 0.822 9.798 0.616906 0.186004 50	37	7.92	7.443	-0.115	7.706	0.311056	0.093787
39 9.92 9.892 1.246 9.774 0.262678 0.079201 40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.288241 0.086908 43 8.19 8.351 0.147 8.618 0.223424 0.067365 44 7.28 8.02 0.243 7.995 0.31187 0.094032 45 7.17 7.263 -0.353 7.263 0.258279 0.077874 46 5.7 5.582 -2.044 5.688 0.295499 0.089096 47 7.82 7.291 -0.246 7.26 0.2877 0.086745 48 7.6 7.101 -0.343 7.263 0.138833 0.041875 49 9.77 10.234 0.822 9.798 0.616906 0.186004 51 9.77 10.056 1.741 9.672 0.310653 0.093666	38	7.96	7.983	-0.056	7.703	0.575695	0.173579
40 9.16 9.033 0.713 8.781 0.181971 0.054866 41 6.8 6.994 -0.811 7.08 0.358769 0.108173 42 8.42 8.123 -0.031 8.462 0.288241 0.086908 43 8.19 8.351 0.147 8.618 0.223424 0.067365 44 7.28 8.02 0.243 7.995 0.31187 0.094032 45 7.17 7.263 -0.353 7.263 0.258279 0.077874 46 5.7 5.582 -2.044 5.688 0.295499 0.080765 47 7.82 7.291 -0.246 7.263 0.138833 0.041875 49 9.77 10.234 0.822 9.798 0.616906 0.186004 50 11.22 11.33 3.063 11.345 0.301932 0.091036 51 9.77 10.056 1.741 9.672 0.310653 0.093066 52 6.98 6.845 -1.041 7.055 0.185805 0.056022	39	9.92	9.892	1.246	9.774	0.262678	0.079201
416.86.994-0.8117.080.3587690.108173428.428.123-0.0318.4620.2882410.086908438.198.3510.1478.6180.2234240.067365447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.080906477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	40	9.16	9.033	0.713	8.781	0.181971	0.054866
428.428.123-0.0318.4620.2882410.086908438.198.3510.1478.6180.2234240.067365447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.089096477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	41	6.8	6.994	-0.811	7.08	0.358769	0.108173
438.198.3510.1478.6180.2234240.067365447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.089096477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	42	8.42	8.123	-0.031	8.462	0.288241	0.086908
447.288.020.2437.9950.311870.094032457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.089096477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	43	8.19	8.351	0.147	8.618	0.223424	0.067365
457.177.263-0.3537.2630.2582790.077874465.75.582-2.0445.6880.2954990.089096477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	44	7.28	8.02	0.243	7.995	0.31187	0.094032
465.75.582-2.0445.6880.2954990.089096477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	45	7.17	7.263	-0.353	7.263	0.258279	0.077874
477.827.291-0.2467.260.28770.086745487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.128603	46	5.7	5.582	-2.044	5.688	0.295499	0.089096
487.67.101-0.3437.2630.1388830.041875499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.12803	47	7.82	7.291	-0.246	7.26	0.2877	0.086745
499.7710.2340.8229.7980.6169060.1860045011.2211.333.06311.3450.3019320.091036519.7710.0561.7419.6720.3106530.093666526.986.845-1.0417.0550.1858050.056022535.867.079-0.9547.2720.3487460.105151549.178.4750.2818.5330.1585390.047801556.897.8710.0948.0850.1520510.04584558a6.9510.2241.1510.0690.4265280.12803	48	7.6	7.101	-0.343	7.263	0.138883	0.041875
50 11.22 11.33 3.063 11.345 0.301932 0.091036 51 9.77 10.056 1.741 9.672 0.310653 0.093666 52 6.98 6.845 -1.041 7.055 0.185805 0.056022 53 5.86 7.079 -0.954 7.272 0.348746 0.105151 54 9.17 8.475 0.281 8.533 0.158539 0.047801 55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	49	9.77	10.234	0.822	9.798	0.616906	0.186004
51 9.77 10.056 1.741 9.672 0.310653 0.093666 52 6.98 6.845 -1.041 7.055 0.185805 0.056022 53 5.86 7.079 -0.954 7.272 0.348746 0.105151 54 9.17 8.475 0.281 8.533 0.158539 0.047801 55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	50	11.22	11.33	3.063	11.345	0.301932	0.091036
52 6.98 6.845 -1.041 7.055 0.185805 0.056022 53 5.86 7.079 -0.954 7.272 0.348746 0.105151 54 9.17 8.475 0.281 8.533 0.158539 0.047801 55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	51	9.77	10.056	1.741	9.672	0.310653	0.093666
53 5.86 7.079 -0.954 7.272 0.348746 0.105151 54 9.17 8.475 0.281 8.533 0.158539 0.047801 55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	52	6.98	6.845	-1.041	7.055	0.185805	0.056022
54 9.17 8.475 0.281 8.533 0.158539 0.047801 55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	53	5.86	7.079	-0.954	7.272	0.348746	0.105151
55 6.89 7.871 0.094 8.085 0.152051 0.045845 58a 6.95 10.224 1.15 10.069 0.426528 0.128603	54	9.17	8.475	0.281	8.533	0.158539	0.047801
58a 6.95 10.224 1.15 10.069 0.426528 0.128603	55	6.89	7.871	0.094	8.085	0.152051	0.045845
	58a	6.95	10.224	1.15	10.069	0.426528	0.128603

 Table 3 (continued)

· · · · ·						
Compound no.	pIC ₅₀	PA ₁₉	NC	PA _{AVG}	SE_{PRED}	SEM
Test set						
3	7.64	6.519	-0.661	6.859	0.341503	0.102967
4	7.57	6.96	-0.465	7.033	0.228562	0.068914
10	6.24	6.661	-0.586	7.129	0.776584	0.234149
11	9.11	7.531	-0.263	7.886	0.339778	0.102447
12	5.3	4.837	-1.733	4.859	0.40408	0.121835
16	7	8.478	0.467	8.219	0.311324	0.093868
17	8.7	8.742	0.569	8.82	0.433235	0.130625
18	9.6	9.156	0.858	9.248	0.415339	0.12523
32	9.62	8.434	0.096	8.312	0.460672	0.138898
34	7.08	7.983	-0.056	7.703	0.575695	0.173579
56	9.02	9.007	0.33	8.772	0.22075	0.066559
57	10.14	9.438	0.716	9.451	0.252834	0.076232

The highest E_n value (highest electron accepting tendency) and highest E_m value (highest electron donating tendency) were identified and used as descriptors. Besides these descriptor values, one indicator parameter (*I*) was also used. All molecules having two substitutions at ring "A" were allotted values of I=1 and the remainder had I=0. The DFT-based regression Eq. 9 was developed, and showed a high correlation as clear from values $r^2_{\rm CV}=0.75$ and $r^2=0.80$.

$$PA_{DFT} = -2.0703\varepsilon_{HOMO} - 0.7483\varepsilon_{LUMO} + 0.043_{W}$$
$$-0.194MR + 2.0234I - 0.036\Delta E_{nm} + 17.82$$
$$r^{2}_{CV} = 0.75r^{2} = 0.80$$
(9)

This model involved steric parameters such as MR and molecular weight, and electronic parameters like eigenvalues of the frontier orbital and the difference of softness ΔE_{nm} . The study revealed that steric bulk and electronic interaction contributed significantly to EGFR inhibitory activity. The predicted activities of the training and test set are reported in Table 4.

Three-dimensional-quantitative structure activity relationship analysis

3D-QSAR analyses, particularly CoMFA and CoMSIA, require a well-defined geometry of the molecule because the molecular activities are very sensitive to conformation. This stable and well-defined geometry may be obtained from quantum chemical methods, which is quite reliable in the absence of crystal structure of ligand receptor complexes; the crystal structure of EGFR (1M17) with a ligand very similar to the current series was recently reported [18].

Fig. 2 Contribution of parameter A (atoms)/H (hydrogen atoms) to least active molecule activity

Fig. 3 Contribution of parameter A/H to highest active molecule activity

Table 4 Observed and predicted activities of training and test set ofcompounds by density functional theory (DFT) models. ε_{HOMO} Energyof highest occupied molecular orbital, ε_{LUMO} energy of lowest

unoccupied molecular orbital, *MW* molecular weight, *MR* molar refractivity, *I* indicator parameter, ΔE_{nm} difference in acidic and basic softness, *pIC50* observed activity, *PA* predicted activity

Compound no.	$\epsilon_{\rm HOMO}$	ε_{LUMO}	MW	MR	Ι	ΔE_{nm}	pIC50	PA
Training set								
1	5.660096	1.469448	221.261	67.632	0	-136.447	6.46	6.321
2	5.796156	1.551084	239.251	67.849	0	-136.518	7.25	6.713
5	6.041065	1.795992	347.157	80.04	0	-100.639	7.1	7
6	5.877793	1.578296	289.259	73.606	0	-131.467	6.24	7.374
7	5.660096	1.415024	251.287	74.095	0	-136.834	7.26	6.412
8	5.823368	1.523872	330.183	81.718	0	-136.631	7.52	7.9
9	5.469612	1.197328	236.276	72.333	0	-137.975	6.11	6.707
13	6.013852	3.102168	345.155	82.58	0	-135.125	6.05	6.747
14	5.551248	1.49666	251.287	74.095	0	-136.555	6.92	6.566
15	5.660096	1.605508	330.183	81.718	0	-136.584	8	8.175
19	5.17028	1.387812	315.172	79.955	0	-138.493	10	9.117
20	5.4424	1.605508	362.172	84.741	0	-143.641	9.46	9.67
21	5.197492	1.415024	304.274	78.306	0	-132.88	8.48	8.689
22	5.905004	2.966108	266.259	74.957	0	-134.675	4.92	5.143
23	6.041065	2.99332	284.249	75.173	0	-134.93	5.22	5.583
24	6.095488	3.020532	300.704	79.762	0	-134.759	6.09	5.26
25	6.068276	2.99332	345.155	82.58	0	-134.874	6	6.706
26	6.285972	3.619196	392.155	87.365	0	-99.264	6.27	5.592
27	5.387976	1.659932	281.313	80.559	1	-106.537	7.54	7.756
28	5.687309	1.469448	299.304	80.775	1	-137.171	8.42	9.119
29	5.741732	1.49666	315.759	85.363	1	-136.911	9.51	8.793
30	5.71452	1.523872	360.21	88.181	1	-136.817	10.6	10.192
31	5.959428	1.795992	407.21	92.967	1	-100.498	9.05	9.26
33	5.4424	1.333388	329.199	85.449	0	-137.35	8.4	8.089
35	5.632884	1.523872	316.157	76.949	0	-136.876	8.33	8.626
36	5.387976	1.659932	329.199	85.449	0	-131.683	8.16	7.753
37	5.143068	1.415024	343.225	90.197	0	-137.258	7.92	8.326
38	5.143068	1.469448	343.225	89.684	0	-137.035	7.96	8.377
39	5.143068	1.170116	330.186	84.656	0	-140.31	9.92	9.135
40	5.115856	1.170116	344.213	90.149	0	-139.863	9.16	8.711
41	5.415188	1.251752	358.24	94.384	0	-137.718	6.8	7.734
42	5.4424	1.22454	345.198	86.419	0	-137.667	8.42	8.682
43	5.768944	1.523872	349.617	84.76	0	-137.344	8.19	8.283
44	5.605672	3.020532	360.169	87.28	0	-135.67	7.28	7.405
45	5.605672	3.074956	374.196	92.774	0	-135.271	7.17	6.886
46	5.551248	2.884472	388.223	97.008	0	-135.369	5.7	6.926
47	5.98664	3.047744	375.181	89.043	0	-135.254	7.82	6.885
48	6.068276	3.12938	379.6	87.385	0	-135.025	7.6	7.159
49	5.632884	1.387812	332.156	78.643	0	-137.273	9.77	9.101
50a	5.687309	1.49666	388.263	97.677	0	-137.041	11.22	7.615
51a	5.687309	1.49666	416.317	106.726	0	-137.041	9.77	7.064
52	5.660096	1.469448	444.37	115.928	0	-137.091	6.98	6.562
53	6.013852	1.741568	360.21	88.181	0	-100.477	5.86	6.071
54	5.660096	1.49666	390.236	94.645	0	-136.879	9.17	8.34
55	5.741732	1.551084	360.21	88.181	0	-137.747	6.89	8.125
58a	5.823368	1.605508	439.106	95.804	0	-136.879	6.95	9.798

Table 4 (continued)

	<i>,</i>							
Compound no.	$\epsilon_{\rm HOMO}$	ϵ_{LUMO}	MW	MR	Ι	ΔE_{nm}	pIC50	PA
Test set								
3	5.85058	1.578296	255.706	72.437	0	136.346	7.64	6.39
4	5.82336	1.551084	300.157	75.255	0	136.462	7.57	7.836
10	5.57846	1.306176	304.274	78.306	0	132.213	6.24	7.957
11	5.55124	1.306176	315.172	79.955	0	137.773	9.11	8.363
12	5.85058	3.074956	266.259	74.957	0	135.103	5.3	5.189
16	5.11586	1.306176	236.276	72.333	0	138.779	7	7.386
17	5.17028	1.3606	254.266	72.549	0	-138.55	8.7	7.957
18	5.19742	1.387812	270.721	77.137	0	138.391	9.6	7.691
32	5.74173	1.523872	349.312	86.532	1	131.828	9.62	9.806
34	5.4424	1.3606	343.225	89.684	0	137.337	7.08	7.849
56	5.63288	1.523872	360.21	88.181	1	136.879	9.02	10.36
57	5.74173	1.578296	439.106	95.804	1	136.977	10.14	12.014

Molecular alignment

3D alignment of the structures of all the molecules was performed by two different geometrical schemes (1 and 2).

Geometrical scheme 1

In this scheme, a ligand-based technique was used. Random search based, minimum energy conformers were fully optimized at a semi-empirical AM1 level with gnorm= 0.01 and T=3,600. The fully optimized structures were aligned over the template (molecule 30) and used for CoMFA and CoMSIA with three kinds of charges.

Docking A co-crystal structure of a very similar ligand was reported recently as PDB 1M17 [18]. This protein was obtained from PDB and modified using the FlexX program (BioSolvIT, Sankt Augustin, Germany). The ligand-based active site was defined at a distance of 6.5 Å. Compound 30 was successfully docked to the receptor site, and 100 possible conformers were generated. The best-fit mode was identified on the basis of total score and similarity to the cocrystallized ligand (Fig. 4).

Residue numbers 694, 702, 719,721, 738, 742, 754, 766, 768, 769, 773, 820, 830, and 831 surrounding the active site, and residue 769 are directly involved in hydrogen bonding with the pyridine ring of the inhibitor [18]. N1 of the quinazoline accepts a hydrogen bond from the Met769 amide nitrogen. The other quinazoline nitrogen atom (N3) is not within hydrogen bonding distance of the Thr766 side chain (4.1 Å), but a water molecule bridges this gap. Such a water molecule has been described [37]. Compound 30 displayed the same surrounding interactions and a direct

hydrogen bond with residue 769. This prominent binding mode was used as a template to design other ligands of the series for geometrical scheme 2.

Geometrical scheme 2

This scheme was based on the docked structure of compound 30 to the receptor protein (PDB file 1M17). All ligands were designed by modification of the aforementioned template and were minimized at TFF level within the receptor site. During minimization all protein residues and common moieties of the ligands were constrained. These minimized structures were aligned on the template displayed in Fig. 5, which was used for CoMFA and CoMSIA with three kinds of charges.

Comparative molecular field analysis

GH, GM, and MM charges were applied to both geometrical schemes. Six models (CoMFA₁–CoMFA₆) were developed. CoMFA₁–CoMFA₃ were based on AM1 geometries with GH, GM, and MM charges, respectively. CoMFA₄–CoMFA₆ were based on docked geometries with GH, GM, and MM charges, respectively. The result of both geometries was good, with the docked geometries being statistically significant as reported in Table 5. The best-fit model (CoMFA₆) was based on the docked geometry and an MM charge having high LOO values of q^2 =0.66 and r^2 =0.94. This model involved both steric and bulk interactions, but the steric contribution was dominant in the interaction. The model was validated successfully with the test set of 12 compounds and a $r^2_{\text{predictive}}$ of 0.72 was obtained. The model is also statistically reliable as it is

based on the best binding mode, all molecules have nearly the same conformation as the co-crystal structure, and all have a key contact hydrogen bonding between residue 769 and the nitrogen atom of ring "B". All molecules acquired the same binding site and an almost equal interaction with the hinge region. The activities predicted by CoMFA are summarized in Table 6.

CoMFA map

3D-CoMFA contour maps of the best-fit model CoMFA₆ are displayed in Fig. 6 with both kinds of field effects on compound 30. Green contours indicate the area in which steric bulk substations might affect activity beneficially and the yellow region is favorable for small groups.

The blue contour indicates the region where a positive group was required for high activity, while the red zone indicates the region favorable for negative groups. The green contour was evident around position 3 of ring "C" and position 7 of ring A, indicating that a bulkier group would favor higher activity. A small red contour was evident close to position 6 of ring A, indicating that a negative group would favor higher activity. A blue contour also appeared after the red contour at the same position, which was a clear indication that any elongation of the negative group chain should be positive in nature. A

🖄 Springer

methoxy and ethoxy group would be desirable at this position, in support of previous findings[15].

Comparative molecular similarity analysis

CoMSIA was conducted similarly to CoMFA. CoMFA established that docked geometries and MM charges were the more reliable of the parameters tested. CoMSIA involved only docked geometries with MM charges and the five field descriptors. CoMSIA₁–CoMSIA₆ were based on steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor field effects, respectively. The hydropho-

Fig. 5 Geometrical scheme-2-based aligned structures of all ligands

Table 5 Regression summary of comparative molecular field analysis (CoMFA) results. q^2 Cross validated correlation coefficient, *n* number of component, r^2 correlation coefficient, *F* Fisher value, *SE* standard error

Compound no.	Geometry	Charge ^a	Field	r^2	n	q^2	F	SE
1	AM1	GH	0.40S/0.60E	0.39	8	0.95	90.6	0.35
2	AM1	GM	0.43S/0.57E	0.30	10	0.97	94.73	0.313
3	AM1	MM	0.45S/0.55E	0.49	9	0.97	134.6	0.27
4	Docked	GH	0.53S/0.47E	0.64	7	0.93	65	0.44
5	Docked	GM	0.51S/0.49E	0.65	7	0.93	63.34	0.45
6	Docked	MM	0.57S/0.42E	0.66	7	0.94	72.6	0.42

^a GH Gasteiger Huckel, GM Gasteiger Marsili, MM molecular mechanics

Table 6 Observed and predicted activities of training and test set of compounds by best-fit docking based 3D-QSAR models. *pIC*₅₀ Observed activity, *PA*_{COMFA} predicted activity by CoMFA, *PA*_{COMSLA} predicted activity by CoMSIA

Compound no.	pIC ₅₀	PA _{CoMFA}	Residual	PA _{Comsia}	Residual
Training set					
1	6.46	5.647	0.813	6.365	0.095
2a	7.25	6.126	1.124	6.873	0.377
5	7.1	7.239	-0.139	7.772	-0.672
6	6.24	6.489	-0.249	6.55	-0.31
7	7.26	6.985	0.275	6.787	0.473
8	7.52	7.727	-0.207	8.01	-0.49
9	6.11	6.182	-0.072	6.406	-0.296
13	6.05	6.235	-0.185	6.563	-0.513
14	6.92	7.081	-0.161	7.459	-0.539
15	8	8.581	-0.581	8.599	-0.599
19	10	9.381	0.619	9.074	0.926
20	9.46	9.233	0.227	9.326	0.134
21	8.48	8.75	-0.27	8.041	0.439
22	4.92	4.772	0.148	4.735	0.185
23	5.22	5.017	0.203	5.47	-0.25
24	6.09	6.037	0.053	5.974	0.116
25	6	6.18	-0.18	6.285	-0.285
26	6.27	6.136	0.134	6.41	-0.14
27	7.54	8.055	-0.515	8.078	-0.538
28	8.42	8.547	-0.127	8.585	-0.165
29	9.51	9.249	0.261	9.021	0.489
30	10.6	9.379	1.221	9.258	1.342
31	9.05	9.202	-0.152	9.389	-0.339
33a	8.4	7.333	1.067	7.316	1.084
35	8.33	8.256	0.074	9.125	-0.795
36	8.16	8.145	0.015	7.579	0.581
37	7.92	8.088	-0.168	8.281	-0.361
38	7.96	8.088	-0.128	6.755	1.205
39	9.92	9.785	0.135	8.923	0.997
40	9.16	9.058	0.102	8.491	0.669
41	6.8	6.706	0.094	7.54	-0.74
42	8.42	8.416	0.004	8.436	-0.016

Ta	bl	e	6 ((continued)	
----	----	---	-----	-------------	--

Compound no.	pIC ₅₀	PA _{CoMFA}	Residual	PA _{CoMSIA}	Residual
43	8.19	8.584	-0.394	8.132	0.058
44	7.28	7.988	-0.708	7.761	-0.48
45	7.17	7.434	-0.264	7.451	-0.281
46	5.7	5.58	0.12	5.412	0.288
47	7.82	7.526	0.294	7.472	0.348
48	7.6	7.253	0.347	7.03	0.57
49	9.77	9.742	0.028	9.665	0.105
50	11.22	11.634	-0.414	11.777	-0.557
51	9.77	9.526	0.244	10.026	-0.256
52	6.98	6.771	0.209	6.612	0.368
53	5.86	6.672	-0.812	7.43	-1.57
54	9.17	8.636	0.534	8.517	0.653
55	6.89	7.318	-0.428	6.736	0.154
58a	6.95	9.443	-2.493	9.333	-2.383
Test set					
3	7.64	7.154	0.486	7.365	0.275
4	7.57	7.221	0.349	7.685	-0.115
10	6.24	7.436	-1.196	6.761	-0.521
11	9.11	7.885	1.225	7.567	1.543
12	5.3	4.642	0.658	5.391	-0.091
16	7	7.646	-0.646	7.5	-0.5
17	8.7	8.153	0.547	8.071	0.629
18	9.6	9.227	0.373	8.749	0.851
32	9.62	8.753	0.867	8.341	1.279
34	7.08	8.162	-1.082	8.04	-0.96
56	9.02	8.454	0.566	7.762	1.258
57	10.14	9.502	0.638	9.003	1.137

bic field effect-based model (CoMSIA₃) provided the best result, with LOO values of $q^2=0.59$, $r^2=0.85$, and $r^2_{\text{predictive}}=0.63$, which was statistically superior. The activities predicted by CoMSIA₃ are summarized in Table 6. Table 7 presents the regression summary of CoMSIA models.

CoMSIA map

Figure 7 displays the CoMSIA map with the hydrophobic field effect. A purple contour favorable for hydrophobic

Fig. 6 Comparative molecular field analysis (CoMFA) contour map of anilinoquinolines

groups was evident around position 7 of ring A. A small cyan contour favorable for hydrophilic groups appeared at a specific distance from position 6. The results indicate that a hydrophobic group near position 7 of ring A would have a beneficial effect on activity, while a hydrophilic group is desirable at position 6 for better activity.

Discussion

The first SAR analysis of this series of compounds [38] was based on elementary QSAR obtained from physicochemical aspects. In that study, sites 6 and 7 of ring "A" were identified as being suitable for bulkier groups but there was no quantitative support. Similar studies using HQSAR are still lacking, despite the high predictability. The present HQSAR-based model clearly indicates the contribution of substitutions at sites 6 and 7 of ring "A" to activity. QSAR of same series, and models derived by electronic constant and log P values have been reported

Fig. 7 CoMSIA contour map of anilinoquinolines

[37], as has the hydrophobic related electronic interaction. The current DFT-based QSAR study reveals that steric and electronic interactions contribute significantly to activity. The current DFT model ($r^2_{CV}=0.75 \ r^2=0.80$) is quite compatible with a previous study ($q^2=0.81$ and $r^2=0.85$, components=5) [37], and the current DFT model was validated additionally by other methods.

A similar series of compounds was studied by another group using another co-crystal structure (1D18; an analogous protein) as a starting geometry, with the remaining analyses utilizing a ligand-based technique [18]. All molecules were optimized using PM3 Hamiltonian and MM charges. In this latter study, the best-fit models (CoMFA $q^2=0.643$, CoMSIA $q^2=0.651$) imply that the steric and electrostatic fields are the most important factors for receptor interaction. However, the study omitted to include other aspects including hydrophobic interactions and hydrogen bonding. Overall, the authors reported that substitutions at position 3 of aniline need an optimal volume and electron density to achieve a maximal inhibitory effect, while electron-donating groups at positions 6 and 7 contribute to improved activity. The predictive r^2 for CoMFA was the same as that found in the present study, but for CoMSIA, $r_{\text{predictive}}^2$ was 0.80 with nine components and two fields. An earlier 3D QSAR study involved a similar series of compounds [19]. In this case, the authors used an AM1 charge along with docked conformers; CoMFA $q^2=0.64$ and $r^2=0.97$ with a contribution of all available five fields and six components was 275

reported. In contrast to this previous study, here we used three different charges with docked geometries; MM charges were superior than AM1 ($q^2=0.66$ and $r^2_{\text{predictive}}=0.72$ for the test set). Similarly, CoMSIA using docked geometries with MM charge produced $q^2=0.58$ and $r^2_{\text{predictive}}=0.63$ for the test set, with only a hydrophobic field effect. An earlier study using CoMFA reported a major contribution of steric field, while in CoMSIA the major contribution was from the electrostatic field [17]. The present CoMSIA study indicates that the hydrophobic field provides the major contribution. The basis of this dichotomy requires further elucidation.

The current study included ligand-based models with AM1 geometries, which showed significant QSAR, while receptor-guided geometry was used in geometrical scheme-2. The X-ray structure (PDB 1M17) demonstrates that the hinge contact involves the nitrogen moiety of ring B with residue Met769. In this X-ray structure, the compound adopts a similar orientation as for 4-anilino-quinazoline molecules complexed with cyclin-dependent kinase 2 (CDK2) (PDB codes 1di8 and 1di9, respectively) [37]. The EGFR kinase domain (EGFRK) adopts a bilobate-fold involving the N and C lobes. These two lobes are separated by a cleft similar to those in which ATP, ATP analogues, and ATP-competitive inhibitors have been found to bind [19]. In both the apo-EGFRK and inhibitor-bound forms of EGFRK, there is a salt bridge between Lys721 and Glu738 [19], which indicates that EGFR does not require large rearrangements within the N-lobe for catalytic competence. The cancer drug Erlotinib lies with the N1- and C8containing edge of the quinazoline directed toward the segment connecting the N- and C-lobes, with the ether linkages projecting past the connecting segment into the solvent, and the anilino substituent on the opposite end sequestered in a hydrophobic pocket [19]. In the case of docked-based models, we used the same receptor site as was obtained from the crystal structure. Optimization of all ligands was carried out within the receptor site by freezing the whole protein as well as the central common moiety of ligands, and substituents were allowed to move only under the influence of the receptor site; thus the surrounding

Table 7 Regression summary of comparative molecular similarity analysis (CoMSIA) results. q^2 Cross validated correlation coefficient, *n* number of component, r^2 correlation coefficient, *F* Fisher value, *SE*

standard error, r_{bs}^2 boot strapping correlation coefficient, SD standard deviation, $r_{predictive}^2$ predictive correlation coefficient

No.	Geometry	Charge	Field	q^2	n	r^2	F	SE	$r_{\rm bs}^{2}$	SD	$r_{\rm predictive}^2$
1	Docked	MM	Steric	0.098	_	_	_	_	_	_	_
2	Docked	MM	Electrostatic	0.352	2	-	-	-	-	-	-
3	Docked	MM	Hydrophobic	0.58	8	0.85	23.73	0.65	0.92	0.02	0.63
4	Docked	MM	Donor	0.047		-	-	-	-	-	-
5	Docked	MM	Acceptor	0.21	2	—	—	—	—	—	-

J Mol Model (2010) 16:263-277

ligands and the hinge contact was common for all other ligands as per the crystal structure. This resulted in a superior model, as evidenced by the high values of $q^2=0.66$ and $r^2=0.94$ with $r^2_{\text{predictive}}=0.72$.

Conclusions

HQSAR analysis reveals that an electron-donating group at site 6 of ring "A" and electronegative group at site 3 of ring "C" favor higher activity of EGFR inhibitory anilinoquinolines, and that the effect of such groups is global in nature. The least active (compound-23) and most active (compound-30) molecules (Figs. 2, 3) are similar in structure, and the same fragment shows diverse effects due to electron-donating and electron-withdrawing substitutions. The importance of steric bulk with electronic interaction is evident. The ligand-based 3D QSAR model has proven significant, but a more definitive conclusion requires consideration of the receptor site. The receptor-guided model has a high value of $q^2=0.79$ and $r^2=0.93$, suggesting that ligands of high activity can be obtained by substituting site 6 ring "A" with electron-donating and hydrophobic groups, while site 7 favors bulky and hydrophilic groups.

Acknowledgments This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) through the Research Center for Resistant Cells (R13-2003-009).

References

- Kamath S, Buolamwini JK (2006) Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev 26:569–594
- Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232
- Gullick WJ (1991) prevalence of aberrant expression of the epidermal growth-factor receptor in human cancers. Br Med Bull 47:87–98
- 4. Rewcastle GW, Denny WA, Bridges AJ, Zhou HR, Cody DR, Mcmichael A, Fry DW (1995) Tyrosine kinase inhibitors. 5. Synthesis and structure-activity-relationships for 4-[(phenylmethyl) amino]-quinazolines and 4-(phenylamino)quinazolines as potent adenosine 5'-triphosphate binding-site inhibitors of the tyrosine kinase domain of the epidermal growth-factor receptor. J Med Chem 38:3482–3487
- Thompson AM, Bridges AJ, Fry DW, Kraker AJ, Denny WA (1995) Tyrosine kinase inhibitors. 7. 7-amino-4-(phenylamino) pyrido[4, 3-d]pyrimidines and 7-amino-4-[(phenylmethyl)amino] pyrido[4, 3-d]pyrimidines—a new class of inhibitors of the tyrosine kinase-activity of the epidermal growth-factor receptor. J Med Chem 38:3780–3788
- Smaill JB, Palmer BD, Rewcastle GW, Denny WA, McNamara DJ, Dobrusin EM, Bridges AJ, Zhou HR, Showalter HDH, Winters RT, Leopold WR, Fry DW, Nelson JM, Slintak V, Elliot

WL, Roberts BJ, Vincent PW, Patmore SJ (1999) Tyrosine kinase inhibitors. 15. 4-(phenylamino)quinazoline and 4-(phenylamino) pyrido[d] pyrimidine acrylamides as irreversible inhibitors of the atp binding site of the epidermal growth factor receptor. J Med Chem 42:1803–1815

- Rewcastle GW, Palmer BD, Bridges AJ, Showalter HDH, Li S, Nelson J, McMichael A, Kraker AJ, Fry DW, Denny WA (1996) Tyrosine kinase inhibitors.9. Synthesis and evaluation of fused tricyclic quinazoline analogues as ATP site inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor. J Med Chem 39:918–928
- Smaill JB, Showalter HDH, Zhou HR, Bridges AJ, McNamara DJ, Fry DW, Nelson JM, Sherwood V, Vincent PW, Roberts BJ, Elliott WL, Denny WA (2001) Tyrosine kinase inhibitors. 18. 6substituted 4-anilinoquinazolines and 4-anilinopyrido [3, 4-d] pyrimidines as soluble, irreversible inhibitors of the epidermal growth factor receptor. J Med Chem 44:429–440
- Singh PP, Srivastava HK, Pasha FA (2004) DFT-based QSAR study of testosterone and its derivatives. Bioorg Med Chem 12:171–177
- Pasha FA, Srivastava HK, Singh PP (2005) QSAR study of estrogens with the help of PM3-based descriptors. Int J Quant Chem 104:87–100
- Srivastava HK, Pasha FA, Singh PP (2005) Atomic softness-based QSAR study of testosterone. Int J Quant Chem 103:237–245
- Muddassar M, Pasha FA, Chung HW, Yoo KH, Oh CH, Cho SJ (2008) Receptor guided 3D-QSAR: a useful approach for designing of IGF-1R inhibitors. J Biomed Biotechnol 2008: article ID 837653, doi:10.1155/2008/837653
- Pasha FA, Dal Nam K, Cho SJ (2007) CoMFA based quantitative structure toxicity relationship of azo dyes. Mol Cell Toxicol 3:145–149
- Pasha FA, Muddassar M, Chung HW, Cho SJ, Cho H (2008) Hologram and 3D-quantitative structure toxicity relationship studies of azo dyes. J Mol Model 14:293–302
- Pinto-Bazurco M, Tsakovska I, Pajeva I (2006) QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor. Int J Quant Chem 106:1432–1444
- Assefa H, Kamath S, Buolamwini JK (2003) 3D-QSAR and docking studies on 4-anilinoquinazoline and 4-anilinoquinoline epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. J Comp Aided Mol Des 17:475–493
- Pednekar DV, Kelkar MA, Pimple SR, Akamanchi KG (2004) 3D QSAR studies of inhibitors of epidermal growth factor receptor [EGFR] using CoMFA and GFA methodologies. Med Chem Res 13:605–618
- Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272
- Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular-field analysis (CoMFA).
 effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967
- Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indexes in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146
- Chattaraj PK, Nath S, Sannigrahi AB (1994) Hardness, chemicalpotential, and valency profiles of molecules under internal rotations. J Phys Chem 98:9143–9145
- Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855
- Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity density functional viewpoint. J Chem Phys 68:3801–3807
- Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

- 25. Klopman G (1968) Chemical reactivity and concept of chargeand frontier-controlled reactions. J Am Chem Soc 90:223
- 26. Singh PP, Srivastava SK, Srivastava AK (1980) Matching between Lewis-acids and Lewis-bases on the basis of quantitative softness values and their relation with the stability of the complexes. J Inorg Nucl Chem 42:521–532
- Dewar MJS, Morita T (1969) Ground states of conjugated molecules. XII. Improved calculations for compounds containing nitrogen or oxygen. J Am Chem Soc 91:796
- Singh PP, Srivastava HK, Pasha FA (2004) DFT-based QSAR study of testosterone and its derivatives. Bioorg Med Chem 12:171–177
- 29. Daniels DJ (1996) Surface-penetrating radar. Institute of Electrical Engineers, London
- Kurup A, Garg R, Hansch C (2001) Comparative QSAR study of tyrosine kinase inhibitors. Chem Rev 101:2573–2600
- 31. Frisch MJ (2004) Gaussian, Inc. Wallingford CT
- 32. Glasstone S (1954) Textbook of physical chemistry D. Van Nostrand, New York
- Clark M, Cramer RD, Vanopdenbosch N (1989) Validation of the general-purpose Tripos 5.2 force-field. J Comp Chem 10:982–1012

- 34. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for 3 dimensional structures directed quantitative structure–activity relationships.4. additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comp Sci 29:163–172
- 35. Klebe G (1994) The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J Mol Biol 237:212–235
- 36. DataFit Ev Oakdale Engineering, Oakdale, PA
- 37. Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF (2000) Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J Med Chem 43:133–138
- Bridges AJ, Zhou H, Cody DR et al (1996) Tyrosine kinase inhibitors. 8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6, 7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J Med Chem 39:267–276